A Novel Biomass Supported Na₂CO₃ System for Flue Gas Desulfurization

Hong Shan SHANG, Yuan KOU*, Fan YANG

College of Chemistry & Molecular Engineering, Peking University, Beijing 100871.

Abstract: The breakthrough and stoichiometric SO₂ adsorption efficiencies of a biomass supported Na₂CO₃ system (80 wt %Na₂CO₃/straw) have reached 48.9 % and 80.6 % respectively at a desulfurization temperature of 80°C.

Keywords: Straw, adsorption efficiency, SO2.

Studies on recyclable solid sorbents¹⁻⁶ in dry desulfurization processes have been the subject of much recent attention. For example, in the NOXSO and Powder-Particle Fluidized Bed (PPFB) processes¹⁻³, Na₂CO₃/ γ -Al₂O₃ has been employed as a regenerative sorbent for SO₂ in order to realize the subsequent transformation of SO₂ at operating high temperatures. However, the outlook for actual application of the processes in currently operating power stations is not promising due mainly to the complex processes involved high cost of the sorbents and high energy consumption. Therefore, a cheap, easily obtainable and disposable sorbent seems to be a solution for the development of a highly efficient, industrially acceptable desulfurization system. Utilization of biomaterials or abandoned biomaterials (BIOM), of which the major component is cellulose (C₆H₁₀O₅)_n, is a creative new approach to the problem⁷. The BIOM includes straw, rice husks and stalks, dried branches and leaves, waste papers and similar materials.

The wheat straw employed as the BIOM in this work was composed of 40.50 % C, 5.58 % H and 45.26 % O based on elemental analysis (Elementar Vario EL, Germany). The typical preparation procedure for an 80 wt % Na₂CO₃/straw mixture was shown in literature⁷. The reference sorbent Na₂CO₃/ γ -Al₂O₃ was prepared according to the literature².

The SO₂ removal experiment was carried out under atmosphere pressure at 70~300°C, using a fixed-bed quartz reactor, in which the sorbent (0.33 g) was supported on a quartz frit of medium porosity. The flow rate was 40 mL/min. The simulated flue gas contained 1960 ppm SO₂ with N₂ as the balance gas. An FT-IR spectrometer

(Vector 22, Bruker) with an on-line cell was used to monitor the SO₂ concentrations

^{*}E-mail: yuankou@pku.edu.cn

before and after the reactor. The adsorption efficiency η (breakthrough/stoichiometric⁸, ⁹/saturation) of the sorbent is given by $\eta = f_s / f_c \times 100$ %, where f_c is the amount in mols of Na₂CO₃ in the sorbent and f_s is the amount in mols of

 ${\rm SO}_2$ adsorbed by the sorbent. The Na/S ratio is given by r = 2 f_c / f_s , and is theoretically equal to 2.

Figure 1 Desulfurization curves of sorbents at a temperature of 80°C

(a) Na₂CO₃, (b) 80 wt % Na₂CO₃/ γ -Al₂O₃, (c) 20 wt % Na₂CO₃ / γ -Al₂O₃, (d) 80 wt % Na₂CO₃/straw. The adsorption efficiencies (A) for curve d have shown in the **Figure**, in which, A_{Break} = Breakthrough efficiency, A_{Stoic} = Stoichiometric efficiency, A_{Statu} = Saturation efficiency.

 Table 1
 Result of several sorbents on removal of SO₂ at temperature 80°C

	Breakthrough			Saturation		Stoichiometric	
	Efficiency mol %	Time hours	Na/S	Efficiency mol %	Na/S	Efficiency (mol %)	Na/S
а	0	0	-	8.6	23.2	8.6	23.2
b	7.6	0.90	26.6	24.2	8.26	24.0	8.34
с	37.2	1.10	5.38	92.1	2.17	74.9	2.67
d	48.9	5.80	4.09	85.1	2.35	80.6	2.48

Figure 1 and **Table 1** show a comparison of Na₂CO₃/straw, Na₂CO₃/ γ -Al₂O₃ and pure Na₂CO₃ for removal of SO₂ at a temperature of 80°C. The breakthrough and stoichiometric adsorption efficiencies of 80 wt % Na₂CO₃/straw are 48.9 % and 80.6 %, whilst that of 80 wt % Na₂CO₃/ γ -Al₂O₃ are 7.6 % and 24.0 %, respectively. The activity of the 80 wt % Na₂CO₃/ γ -Al₂O₃ are 7.6 % and 24.0 %, respectively. The activity of the 80 wt % Na₂CO₃/straw is also significantly higher than 20 wt % Na₂CO₃/ γ -Al₂O₃, which is a typical sorbent employed in PPFB processes². As shown in **Table 1**, the breakthrough adsorption efficiency of 80 wt % Na₂CO₃/straw is 11.7 percent higher than the 20 wt % Na₂CO₃/ γ -Al₂O₃, whilst the stoichiometric efficiency is 5.7 percent higher. In addition, with respect to saturation of the sorbents, the efficiency of 80 wt % Na₂CO₃/straw is significantly higher than that of the 80 wt % Na₂CO₃/ γ -Al₂O₃, and is almost equal to 20 wt % Na₂CO₃/ γ -Al₂O₃ compared with that of 80 wt %

A Novel Biomass Supported Na₂CO₃ System for Flue Gas Desulfurization 905

 Na_2CO_3 /straw is mainly due to the adsorption properties of the γ -Al₂O₃ support^{2, 10, 11}. In brief, the data shows that the adsorption efficiency and Na/S of breakthrough and stoichiometric adsorption of the 80 wt % Na₂CO₃/straw are the best of the samples investigated. XPS analysis demonstrated that the main product in each is Na₂SO₃.

Figure 3 Curves of TGA and DTA of wheat straw.

Figure 2 shows the effect of temperature on SO_2 removal for 80 wt % Na₂CO₃/straw. It can be seen that the breakthrough adsorption efficiency changes between 45.1 % and 48.9 % whilst the stoichiometric adsorption efficiency changes between 76.9 % and 82.1 % as the temperature increases from 70 to 300°C.

In order to further investigate the properties of the straw, TGA and DTA were carried out. The results are shown in **Figure 3**. The TGA weight loss curve shows that no chemical change occurs below 200°C. When the temperature rises above 200°C, the straw starts to carbonize and two stages of weight loss appear in the regions $250 \sim$

Hong Shan SHANG et al.

 350° C and $350 \sim 650^{\circ}$ C. The DTA curve shows two distinct peaks between $273 \sim 407^{\circ}$ C and $407 \sim 510^{\circ}$ C respectively. Both are exothermic oxidation processes, suggesting that the straw is a potential reducing agent in the temperature range $200 \sim 510^{\circ}$ C.

It should be noted that the reduction properties of cellulose-based materials have been reported previously. Examples include reduction of NO, bivalent copper and hexavalent chromium by cellulose-based $BIOM^{12-14}$. Based on previous work and this study, a more efficient and complete flue gas desulfurization (FGD) process can be proposed. The key steps in the proposed process are the enrichment of SO₂ and the subsequent reduction of SO₂ to S. The reactions are described schematically below:

 $Na_2CO_3/BIOM + SO_2 \longrightarrow Na_2SO_3/BIOM + CO_2$

 $C_6H_{10}O_5 + 6SO_2 \longrightarrow 6S + 6CO_2 + 5H_2O$

It can be seen from the above reactions that SO_2 is first enriched by the BIOM system and then selectively reduced to elemental S by BIOM under oxygen-free conditions. The Na₂CO₃ is capable of being recycled. In that case, suitable catalyst will be needed, and further studies are being carried out in this laboratory.

In conclusion, the sorbent Na_2CO_3 supported on straw can efficiently adsorb SO_2 at 80°C, and the desulfurization process can be operated over a large temperature range. In addition, the straw is a possible promising reducing agent for SO_2 reduction.

References

- 1. W. T. Ma, J. L. Haslbeck, Environ. Prog., 1993, 12, 163.
- 2. G. Xu, G. Luo, H. Akamatsu, K. Kato, Ind. Eng. Chem. Res., 2000, 39, 2190.
- 3. O. C. Snip, M. Wood, R. Korbee, J. C. Schouten, Chem. Eng. Sci., 1996, 51, 2021.
- 4. S. G. Deng, Y. S. Lin, Ind. Eng. Chem. Res., 1996, 35, 1429-1437.
- 5. J. H. A. Kiel, W. Prins, Appl. Catal. B: Environ., 1992, 1, 13.
- 6. F. M. Dautzenberg, J. E. Nader, Chem. Eng. Sci., 1971, 67, 86.
- 7. Y. Kou, H. S. Shang, etc. China Pat. Appl., Number: 01115505; 01115506. X.
- 8. K. Stejskalova, Z. Bastl, K. Mocek, Collect. Czech. Chem. Commun., 1996, 61, 1141.
- 9. K. Mocek, K. Stejskalova, P. Bach, Collect. Czech. Chem. Commun., 1996, 61, 827.
- 10. A. Pieplu, O. Saur, J. C. Lavalley, J. Catal., 1996, 159, 394.
- 11. K. S. Yoo, S. D. Kim, S. B. Park, Ind. Eng. Chem. Res., 1994, 39, 1786.
- 12. S. Bhalla, V. Sarma, Proc. Annu. Int. Pittsburgh Coal Conf. 16th, 1999, 404.
- 13. Eur. Pat. Appl. EP 908525 Al 14, Apr. 1999.
- 14. F. S. Jorge, T. M. Santos, J. P. de Jesus. Wood Sci. Technol., 1999, 33, 487, 501.

Received 14 December, 2001